Abstract
Let D0 be the Stokes drag on an axially symmetric body moving parallel to its axis with velocity U0 through an unbounded fluid. The drag D experienced by the same body oscillating with velocity U = U0eiσt along its axis in the unbounded fluid is given by the expression
$\frac{D}{D_0} = \left \{{1 +{\frac {d_0}{6 \surd{(2)} \pi \mu a U_0}}(1+i)M+O(M^2)}\right \}e^{i \sigma t},$
where a is any characteristic particle dimension and
$M^2 = a^2 \sigma \rho |\mu$
is a dimensionaless number. The part of this drag formula which gives the energy dissipation is calculated for bodies of various shapes.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献