The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers

Author:

Brenner H.,Cox R. G.

Abstract

Assuming that the Stokes flow past an arbitrary particle in a uniform stream is known for any three non-coplanar directions of flow, then the force on the body to O(R), for any direction of flow, is given explicitly in terms of these Stokes velocity fields. The Reynolds number (R) based on the maximum particle dimension is assumed small. For bodies with certain types of symmetry it suffices merely to know the Stokes resistance tensor for the body in order to calculate this force. In this case the resulting formula is identical to that of Brenner (1961) and Chester (1962). However, for bodies devoid of such symmetry, their formula is incomplete—there being an additional force at right angles to the uniform stream which remains invariant under a reversal of the flow at infinity. As this additional force is a lift force, it follows that the Brenner-Chester formula furnishes the correct drag on a body of arbitrary shape; moreover, this drag is always reversed to at least O(R) by a reversal of the uniform flow at infinity.Exactly analogous formulae are derived using the classical Oseen equations, and it is shown that although this gives both the correct vector force on bodies with the above types of symmetry and the correct drag on bodies of arbitrary shape, it gives in general an incorrect lift component for completely arbitrary particles.Finally, the singular perturbation result for the force on an arbitrary body is extended to terms of O(R2log R). This higher-order contribution to the force is given explicitly in terms of the Stokes resistance tensor, and has the property of being reversed by a reversal of the flow at infinity, regardless of the geometry of the body.These results are collected in the Summary at the end of the paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference7 articles.

1. Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder.J. Fluid Mech. 2,237.

2. Brenner, H. 1961 The Oseen resistance of a particle of arbitrary shape.J. Fluid Mech. 11,604.

3. Lamb, H. 1932 Hydrodynamics ,6th edition.Cambridge University Press.

4. Chester, W. 1962 On Oseen's approximation.J. Fluid Mech. 13,557.

5. Chapman, S. & Cowling, T. G. 1953 The Mathematical Theory of Non-Uniform Gases .Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3