Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder

Author:

Proudman Ian,Pearson J. R. A.

Abstract

This paper is concerned with the problem of obtaining higher approximations to the flow past a sphere and a circular cylinder than those represented by the well-known solutions of Stokes and Oseen. Since the perturbation theory arising from the consideration of small non-zero Reynolds numbers is a singular one, the problem is largely that of devising suitable techniques for taking this singularity into account when expanding the solution for small Reynolds numbers.The technique adopted is as follows. Separate, locally valid (in general), expansions of the stream function are developed for the regions close to, and far from, the obstacle. Reasons are presented for believing that these ‘Stokes’ and ‘Oseen’ expansions are, respectively, of the forms $\Sigma \;f_n(R) \psi_n(r, \theta)$ and $\Sigma \; F_n(R) \Psi_n(R_r, \theta)$ where (r, θ) are spherical or cylindrical polar coordinates made dimensionless with the radius of the obstacle, R is the Reynolds number, and $f_{(n+1)}|f_n$ and $F_{n+1}|F_n$ vanish with R. Substitution of these expansions in the Navier-Stokes equation then yields a set of differential equations for the coefficients ψn and Ψn, but only one set of physical boundary conditions is applicable to each expansion (the no-slip conditions for the Stokes expansion, and the uniform-stream condition for the Oseen expansion) so that unique solutions cannot be derived immediately. However, the fact that the two expansions are (in principle) both derived from the same exact solution leads to a ‘matching’ procedure which yields further boundary conditions for each expansion. It is thus possible to determine alternately successive terms in each expansion.The leading terms of the expansions are shown to be closely related to the original solutions of Stokes and Oseen, and detailed results for some further terms are obtained.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference12 articles.

1. Faxén, H. 1927 Nova Acta Societatis Scientianum Upsaliensis, Volumen extra ordinem.

2. Oseen, C. W. 1913 Ark. f. Mat. Astr. og Fys. 9, no. 16.

3. Lamb, H. 1932 Hydrodynamics ,6th Ed. Cambridge University Press.

4. Stokes, G. G. 1851 Camb. Phil. Trans. 9,8.

5. Goldstein, S. 1929 Proc. Roy. Soc. A,123,225.

Cited by 829 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3