The electrohydrodynamic stability of a liquid bridge: microgravity experiments on a bridge suspended in a dielectric gas

Author:

BURCHAM C. L.,SAVILLE D. A.

Abstract

The electrohydrodynamic stability of a liquid bridge was studied in steady and oscillatory axial electric fields with a novel apparatus aboard a space shuttle. To avoid interphase transport, which complicates matters in terrestrial, matched-density systems, the experiments focused on a liquid column surrounded by a dielectric gas. The micro-gravity acceleration level aboard the spacecraft kept the Bond number small; so interface deformation by buoyancy was negligible. To provide microgravity results for comparison with terrestrial data, the behaviour of a castor oil bridge in a silicone oil matrix liquid was studied first. The results from these experiments are in excellent agreement with earlier work with isopycnic systems as regards transitions from a perfect cylinder to the amphora shape and the separation of an amphora into drops. In addition, the location of the amphora bulge was found to be correlated with the field direction, contrary to the leaky dielectric model but consistent with earlier results from terrestrial experiments. Next, the behaviour of a bridge surrounded by a dielectric gas, sulphur hexa fluoride (SF6), was investigated. In liquid–gas experiments, electrohydrodynamic ejection of liquids from ‘Taylor cones’ was used to deploy fluid and form bridges by remote control. Experiments with castor oil bridges in SF6 identified the conditions for two transitions: cylinder–amphora, and pinch-off. In addition, new behaviour was uncovered with liquid–gas interfaces. Contrary to expectations based on perfect dielectric behaviour, castor oil bridges in SF6 could not be stabilized in AC fields. On the other hand, a low-conductivity silicone oil bridge, which could not be stabilized by a DC field, was stable in an AC field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3