Preferential Contamination in Electroadhesive Touchscreens: Mechanisms, Multiphysics Model, and Solutions

Author:

Chatterjee Sitangshu1ORCID,Ma Yuan2ORCID,Sanghani Adit1,Cherif Mondher3,Colgate J. Edward4ORCID,Hipwell M. Cynthia1ORCID

Affiliation:

1. J. Mike Walker '66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA

2. Department of Mechanical Engineering and Research Institute for Intelligent Wearable Systems The Hong Kong Polytechnic University Hong Kong 999077 China

3. Tanvas Inc. Chicago IL 60661 USA

4. Center for Robotics and Biosystems Northwestern University Evanston IL 60208 USA

Abstract

AbstractElectroadhesive surface haptic touchscreens can help augment user experiences by providing tactile effects. The electrode layout in current commercialized designs has separated electrodes for the sensing and actuating functions. During regular use, it is observed that fingerprint residue preferentially deposits on the actuating electrodes far more than the sensing electrodes, which makes the underlying electrode pattern apparent and is highly undesirable for touchscreen users. To address this issue, various physical phenomena (electrohydrodynamic deformation, capillary bridge stabilization, electrowetting, and electrophoretic deposition) are investigated to understand the mechanism. Through experimentation, multiphysics modeling, and surface characterization, it is found that the root cause can be attributed to two mechanisms occurring in the actuating regions: 1) electrohydrodynamic deformation of sebum droplets attached to the finger valleys leading to the formation of additional capillary bridges and residual droplets on the screen surface after their rupture, and 2) electric field‐induced stabilization of sebum capillary bridges existing between the finger ridges and the screen, leading to the coalescence and formation of larger‐sized droplets. The developed model can then be used to address the issue during the screen design process. An example of using the model to explore the impact of changes in screen oleophobicity is shown.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3