Affiliation:
1. J. Mike Walker '66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
2. Department of Mechanical Engineering and Research Institute for Intelligent Wearable Systems The Hong Kong Polytechnic University Hong Kong 999077 China
3. Tanvas Inc. Chicago IL 60661 USA
4. Center for Robotics and Biosystems Northwestern University Evanston IL 60208 USA
Abstract
AbstractElectroadhesive surface haptic touchscreens can help augment user experiences by providing tactile effects. The electrode layout in current commercialized designs has separated electrodes for the sensing and actuating functions. During regular use, it is observed that fingerprint residue preferentially deposits on the actuating electrodes far more than the sensing electrodes, which makes the underlying electrode pattern apparent and is highly undesirable for touchscreen users. To address this issue, various physical phenomena (electrohydrodynamic deformation, capillary bridge stabilization, electrowetting, and electrophoretic deposition) are investigated to understand the mechanism. Through experimentation, multiphysics modeling, and surface characterization, it is found that the root cause can be attributed to two mechanisms occurring in the actuating regions: 1) electrohydrodynamic deformation of sebum droplets attached to the finger valleys leading to the formation of additional capillary bridges and residual droplets on the screen surface after their rupture, and 2) electric field‐induced stabilization of sebum capillary bridges existing between the finger ridges and the screen, leading to the coalescence and formation of larger‐sized droplets. The developed model can then be used to address the issue during the screen design process. An example of using the model to explore the impact of changes in screen oleophobicity is shown.
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献