How advances in low-g plumbing enable space exploration

Author:

Weislogel M. M.,Graf J. C.,Wollman A. P.,Turner C. C.,Cardin K. J. T.,Torres L. J.ORCID,Goodman J. E.,Buchli J. C.

Abstract

AbstractIn many ways, plumbing is essential to life support. In fact, the advance of humankind on Earth is directly linked to the advance of clean, healthy, reliable plumbing solutions. Shouldn’t this also be true for the advancement of humankind in space? Unfortunately, the reliability of even the simplest plumbing element aboard spacecraft is rarely that of its terrestrial counterpart. This state of affairs is due entirely to the near-weightless “low-g” state of orbiting and coast spacecraft. But the combined passive capillary effects of surface tension, wetting, and system geometry in space can be exploited to replace the passive role of gravity on earth, and thus achieve similar outcomes there. In this paper, we review a selection of experiments conducted in low-g environments (i.e., ISS and drop towers) that focus on capillary fluidic phenomena. The results of each experiment are highly applicable to subsequent advances in spacecraft plumbing. With examples ranging from spurious droplet ejections to passive bubble coalescence, to droplet bouncing, to complex container wicking, we show how simple low-g demonstrations can lead to significant reliability improvements in practical passive plumbing processes from pipetting to liquid-gas separations, to wastewater transport, to drinking in space.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Reference74 articles.

1. Clark, W. D. Zero Gravity Phase Separator Technologies—Past Present and Future. SAE Technical Paper 921160 (ICES, 1992).

2. McAllister, M. Spinning science: multi-use variable-g platform arrives at the space station. NASA Space Station Research. https://www.nasa.gov/mission_pages/station/research/news/Spinning_Science_MVP_Arrives_At_ISS (2018).

3. Smith, D. & Kaufman, K. Space Linear Acceleration Mass Measurement Device (SLAMMD) for the Human Research Facility (HRF). SAE Technical Paper 981652 (SAE International, 1998) https://doi.org/10.4271/981652.

4. Avery, D. NASA has just unveiled a brand-new space toilet—and it costs $23 million, architecture and design. https://www.architecturaldigest.com/story/nasa-unveiled-new-space-toilet-23-million (2020) (see also: e.g., Patel, N. V. A leaky toilet on the International Space Station is about as fun as it sounds. Popular Science (February 8, 2019).

5. Thompson, A. NASA just sent a new $23 million space toilet to the International Space Station. Smithsonian Magazine (October, 2020).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3