Abstract
Abstract
Lower-body exoskeleton control that adapts to users and provides assistance-as-needed can increase user participation and motor learning and allow for more effective gait rehabilitation. Adaptive model-based control methods have previously been developed to consider a user’s interaction with an exoskeleton; however, the predefined dynamics models required are challenging to define accurately, due to the complex dynamics and nonlinearities of the human-exoskeleton interaction. Model-free deep reinforcement learning (DRL) approaches can provide accurate and robust control in robotics applications and have shown potential for lower-body exoskeletons. In this paper, we present a new model-free DRL method for end-to-end learning of desired gait patterns for over-ground gait rehabilitation with an exoskeleton. This control technique is the first to accurately track any gait pattern desired in physiotherapy without requiring a predefined dynamics model and is robust to varying post-stroke individuals’ baseline gait patterns and their interactions and perturbations. Simulated experiments of an exoskeleton paired to a musculoskeletal model show that the DRL method is robust to different post-stroke users and is able to accurately track desired gait pattern trajectories both seen and unseen in training.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献