Maximum likelihood estimate sharing for collective perception in static environments for swarm robotics

Author:

Abdelli AhmedORCID,Yachir Ali,Amamra Abdenour,Khaldi Belkacem

Abstract

AbstractCollective decision-making by a swarm of robots is of paramount importance. In particular, the problem of collective perception wherein a swarm of robots aims to achieve consensus on the prevalent feature in the environment. Recently, this problem has been formulated as a discrete collective estimation scenario to estimate their proportion rather than deciding about the prevalent one. Nevertheless, the performance of the existing strategies to resolve this scenario is either poor or depends on higher communication bandwidth. In this work, we propose a novel decision-making strategy based on maximum likelihood estimate sharing (MLES) to resolve the discrete collective estimation scenario. Experimentally, we compare the tradeoff speed versus accuracy of MLES with state-of-the-art methods in the literature, such as direct comparison (DC) and distributed Bayesian belief sharing (DBBS). Interestingly, MLES achieves an accurate consensus nearly 20% faster than DBBS, its communication bandwidth requirement is the same as DC but six times less than DBBS, and its computational complexity is $O(1)$ . Furthermore, we investigate how noisy sensors affect the effectiveness of the strategies under consideration, with MLES showing better sustainability.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference23 articles.

1. Negative updating applied to the best-of-n problem with noisy qualities;Lee;Swarm Intell.,2021

2. Swarm Robotic Behaviors and Current Applications

3. Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing

4. Review of methodologies and tasks in swarm robotics towards standardization

5. [21] Strobel, V. , Ferrer, E. C.ó and Dorigo, M. . Managing Byzantine Robots via Blockchain Technology in a Swarm Robotics Collective Decision Making Scenario. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2018, 541–549.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3