Restoring Connectivity in Robotic Swarms – A Probabilistic Approach

Author:

Eshaghi KasraORCID,Sari Naeimeh NajafizadehORCID,Haigh CameronORCID,Roman DarieORCID,Nejat GoldieORCID,Benhabib BenoORCID

Abstract

AbstractConnectivity is an integral trait for swarm robotic systems to enable effective collaboration between the robots in the swarm. However, connectivity can be lost due to events that could not have been a priori accounted for. This paper presents a novel probabilistic connectivity-restoration strategy for swarms with limited communication capabilities. Namely, it is assumed that the swarm comprises a group of follower robots whose global connectivity to a base can only be achieved via a localized leader robot. In this context, the proposed strategy incrementally restores swarm connectivity by searching for the lost robots in regions-of-interest (RoIs) determined using probability theory. Once detected, newly found robots are either recruited to help the leader in the restoration process, or directly guided to their respective destinations through accurate localization and corrective motion commands. The proposed swarm-connectivity strategy, thus, comprises the following three stages: (i) identifying a discrete set of optimal RoIs, (ii) visitation of these RoIs, by the leader robot, via an optimal inter-region search path, and (iii) searching for lost robots within the individual RoIs via an optimal intra-region search path. The strategy is novel in its use of a probabilistic approach to guide the leader robot’s search as well as the potential recruitment of detected lost robots to help in the restoration process. The effectiveness of the proposed probabilistic swarm connectivity-restoration strategy is represented, herein, through a detailed simulated experiment. The significant efficiency of the strategy is also illustrated numerically via a comparison to a competing random-walk based method.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3