Hybrid Strategy-based Coordinate Controller for an Underwater Vehicle Manipulator System Using Nonlinear Disturbance Observer

Author:

Li Jiyong,Huang Hai,Wan Lei,Zhou Zexing,Xu Yang

Abstract

SummaryThis paper presents a hybrid strategy-based coordinate controller with a novel nonlinear disturbance observer for autonomous underwater vehicle manipulator systems (UVMSs). This method can reduce the influence from external unknown disturbances, inner coupling effects and model uncertainties by using a modified disturbance observer. Considering the natural redundancy property of the UVMS, the redundancy resolution algorithm is often utilized to give desired trajectories in the vehicle–joint space. However, because of the calibration errors, assembling errors and numerical errors, these desired trajectories may not lead the end-effector to the goal point accurately. To realize accurate motion control even when small errors exist in the planning phase, a hybrid strategy is introduced to transform the controller in the joint–vehicle space to the controller in the task space. Numerical simulations based on a UVMS have been carried out to testify the effectiveness of the proposed coordinate controller and the hybrid strategy. During the simulations, unknown disturbances are exerted upon the system. The trajectory tracking and error fixing performances are discussed in comparative analyses. The controller also maintains robust characteristics in comparison with the passivity-based controller and the proposed controller but without the disturbance observer. Experiments are also carried out to test its performance.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference32 articles.

1. Digital type disturbance compensation control of a floating underwater robot with 2 link manipulator

2. 4. Y. Cui and N. Sarkar , “A Unified Force Control Approach to Autonomous Underwater Manipulation,” IEEE International Conference on Robotics and Automation, San Francisco, USA (2000) pp. 1263–1268.

3. A unified dynamics-based motion planning algorithm for autonomous underwater vehicle-manipulator systems (UVMS)

4. Automatic supervisory control of the configuration and behavior of multibody mechanisms,;Liegeois;IEEE Trans. Syst. Man Cyber.,1977

5. 8. P. Cieslak , P. Ridao and M. Giergiel , “Autonomous Underwater Panel Operation by GIRONA500 UVMS: A Practical Approach to Autonomous Underwater Manipulation,” IEEE International Conference on Robotics and Automation, Seattle, USA (2015) pp. 529–536.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3