Fourier-based optimal design of a flexible manipulator path to reduce residual vibration of the endpoint

Author:

Park Kyung-Jo,Park Youn-Sik

Abstract

SUMMARYA method is presented for generating the path which significantly reduces residual vibration. The desired path is optimally designed so that the system completes the required move with minimum residual vibration. The dynamic model and optimal path are effectively formulated and computed by using special moving coordinates, called virtual rigid link coordinates, to represent the link flexibilities. Also joint compliances are included in the model. Characteristics of residual vibration are identified from the linearized equations of motion. From these results, the performance index is selected to reduce residual vibration effectively. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables, i.e. Fourier coefficients, the only ones which have a considerable effect on the reduction of residual vibration. A two-link manipulator is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate manipulator path.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference20 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3