Trajectory generation and step planning of a 12 DoF biped robot on uneven surface

Author:

Gupta Gaurav,Dutta Ashish

Abstract

SUMMARYOne of the primary goals of biped locomotion is to generate and execute joint trajectories on a corresponding step plan that takes the robot from a start point to a goal while avoiding obstacles and consuming as little energy as possible. Past researchers have studied trajectory generation and step planning independently, mainly because optimal generation of robot gait using dynamic formulation cannot be done in real time. Also, most step-planning studies are for flat terrain guided by search heuristics. In the proposed method, a framework for generating trajectories as well as an overall step plan for navigation of a 12 degrees of freedom biped on an uneven terrain with obstacles is presented. In order to accomplish this, a dynamic model of the robot is developed and a trajectory generation program is integrated with it using gait variables. The variables are determined using a genetic algorithm based optimization program with the objective of minimizing energy consumption subject to balance and kinematic constraints of the biped. A database of these variables for various terrain angles and walking motions is used to train two neural networks, one for real-time trajectory generation and another for energy estimation. To develop a global navigation strategy, a weighted A* search is used to generate the footstep plan with energy considerations in sight. The efficacy of the approach is exhibited through simulation-based results on a variety of terrains.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference45 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-aided design tool for typical flexible mechanisms synthesis by means of evolutionary algorithms;Robotica;2024-03-04

2. A new method for finding the proper initial conditions in passive locomotion of bipedal robotic systems;Communications in Nonlinear Science and Numerical Simulation;2024-03

3. Motion Planning for a Robotic Wheelchair with SLERP MPC Local Planner;2023 62nd Annual Conference of the Society of Instrument and Control Engineers (SICE);2023-09-06

4. Path Planning and Landing for Unmanned Aerial Vehicles Using AI;Lecture Notes in Networks and Systems;2022-10-13

5. Application of Neural Network in the Stability of Biped Robot and Embedded Control of Walking Mode;Journal of Electrical and Computer Engineering;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3