State of the art and future trends in obstacle-surmounting unmanned ground vehicle configuration and dynamics

Author:

He Miaolei,Yue XiangdiORCID,Zheng Yuling,Chen Junxin,Wu Shuangqing,Heng Zeng,Zhou Xuanyi,Cai Yaoyi

Abstract

AbstractThis article presents a review of the platform configuration and dynamic of obstacle-surmounting unmanned ground vehicles (UGVs). For now, unmanned systems have emerged as a result of the rapid advancement of artificial intelligence and modern manufacturing techniques both domestically and internationally. The research on unmanned systems has been improved a lot. The UGV platform can execute transportation, recurring, and military tasks independently. For the high-level self-control, adaption, and maneuverability abilities, the UGV platform has been applied in the military, industry, and other special fields widely. The UGV platform usually performs tasks in an unstructured environment, so the all-terrain performance becomes a key factor restricting their operating efficiency and reliability. A brief literature review of the UGV platform is carried out in this article.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3