Comparative study of soil interaction and driving characteristics of different agricultural and space robots in an agricultural environment

Author:

Wirkus Malte1ORCID,Hinck Stefan2ORCID,Backe Christian1ORCID,Babel Jonathan1ORCID,Riedel Vadim2ORCID,Reichert Nele1,Kolesnikov Andrej1ORCID,Stark Tobias1,Hilljegerdes Jens1,Küçüker Hilmi Doğu1ORCID,Ruckelshausen Arno2ORCID,Kirchner Frank1ORCID

Affiliation:

1. Robotics Innovation Center Deutsches Forschungszentrum für Künstliche Intelligenz Bremen Germany

2. Fakultät Ingenieurwissenschaften und Informatik Hochschule Osnabrück Osnabrück Germany

Abstract

AbstractThis paper investigates four different mobile robots with respect to their driving characteristics and soil preservation properties in an agricultural environment. Thereby, robots of classical design from agriculture as well as systems from space robotics with advanced locomotion concepts are considered to determine the individual advantages of each rover concept with respect to the application domain. Locomotion experiments were conducted to analyze the general driving behavior, tensile force, and obstacle‐surmounting capability and ground interaction of each robot. Various soil conditions typical for the area of application are taken into account, which are varied in terms of moisture and density. The presented work covers the specification of the conducted experiments, documentation of the implementation as well as analysis and evaluation of the collected data. In the evaluation, particular attention is paid to the change in driving characteristics under different soil conditions, as well as to the soil stress caused by driving, since soil quality is of critical importance for agricultural applications. The analysis shows that the advanced locomotion concepts, as used in space robotics, also have positive implications for certain requirements in agricultural applications, such as maneuverability in wet conditions and soil conservation. The results show potential for design innovations in agricultural robotics that can be used, to open up new fields of application for instance in the context of precision farming.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3