A divide-and-conquer control strategy with decentralized control barrier function for luggage trolley transportation by collaborative robots

Author:

Gao XuhengORCID,Luan HaoORCID,Xia Bingyi,Zhao ZiqiORCID,Wang JiankunORCID,Meng Max Q.-H.

Abstract

AbstractThis article focuses on the luggage trolley transportation problem, an essential part of robotic autonomous luggage trolley collection. To efficiently address the nonholonomic constraints derived from the formation of two collaborative robots and a queue of luggage trolleys, we propose a comprehensive framework consisting of a global planning method and a real-time divide-and-conquer control strategy. The popular Hybrid A* algorithm generates a feasible path as the global planner. A model predictive controller is designed to track this path stably and in real time. To maintain the formation so that the whole queue of robots and luggage trolleys does not split, a safety filter that consists of a discrete-time control Lyapunov function and a decentralized control barrier function is implemented in the transportation process. Finally, we conduct real-world experiments to verify the effectiveness of the proposed method on three representative paths, and the results show that our approach can achieve robust performance. The demonstration video can be found at https://www.youtube.com/watch?v=iPiT8BfLIpU.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligence in robotics for computer, engineering, and applied sciences;Robotica;2024-09-12

2. Optimization Method of Transportation Path of Terminal Container AGV Based on Bidirectional Search Algorithm;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3