Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method

Author:

Wei Hong-Xing,Wang Tian-Miao,Liu Miao,Xiao Jiang-Yang

Abstract

SUMMARYBionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3