Affiliation:
1. Key Laboratory of the Ministry of Education on Mechanism Theory and Equipment Design, Tianjin University, Tianjin, China
Abstract
Parallel kinematic machines have been applied in aerospace and automotive manufacturing due to their potentials in high speed and high accuracy. However, there exists coupling in parallel kinematic machines, which makes dynamic analysis, rigidity enhancement, and control very complicated. In this article, coupling characteristics of a 5-degree-of-freedom (5-dof) hybrid manipulator are analyzed based on a local index and a global index. First, velocity analysis as well as acceleration analysis of the robot is conducted to provide essential information for dynamic modeling. Then the dynamic model is built based on the principle of virtual work. Whereas the mass matrix is off-diagonal, a local coupling index as well as a global index is defined, based on which coupling characteristics of the robot are analyzed. Results show that distributions of coupling indices are symmetric due to its structural features. And dimensional parameters, structural parameters, as well as mass parameters have a large influence on the system’s coupling characteristics. Research conducted in the article is of great help in optimal design and control. Meanwhile, the method proposed in the article can be applied to other types of parallel kinematic machines or hybrid manipulators.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献