Multi-Agent Tracking of Non-Holonomic Mobile Robots via Non-Singular Terminal Sliding Mode Control

Author:

Yousuf Bilal M.ORCID,Khan Abdul Saboor,Noor Aqib

Abstract

SUMMARYThis paper deals with the problem of the formation control of nonholonomic mobile robots in the leader–follower scenario without considering the leader information, as a result of its velocity and position. The kinematic model is reformulated as a formation model by incorporating the model uncertainties and external disturbance. The controller is presented in the two-step process. Firstly, the tracking problem is taken into consideration, which can be used as a platform to design a controller for the multi-agents. The proposed controller is designed based on a non-singular fast terminal sliding mode controller (FTSMC), which drives the tracking error to zero in finite time. It not only ensures the tracking but also handles the problem related to non-singularities. Moreover, the design control scheme is modified using high-gain observer to resolve the undefined fluctuations due to man-made errors in sensors. Secondly, the multi-agent tracking problem is considered; hence, a novel formation control is designed using FTSMC, which ensures the formation pattern as well as tracking. Furthermore, the obstacle avoidance algorithm is incorporated to avoid the collision, inside the region of interest. With the Lyapunov analysis, the stability of the proposed algorithm is verified. As a result, simulated graphs are shown to prove the efficacy of the proposed control scheme.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference16 articles.

1. Tracking control of nonholonomic mobile robots with velocity and acceleration constraints

2. 8. Khalid, N. and Memon, A. Y. , “Output Feedback Stabilzation of an Inertia Wheel Pendulum using Sliding Mode Control,” UKACC International Conference on Control, U.K. (2014), pp. 157–162.

3. Integral terminal sliding mode formation control of non-holonomic mobile robots using leader follower approach,;Asif;Robotica,2016

4. Terminal sliding mode-based cooperative tracking control for nonlinear dynamic systems,;Zuo;Trans. Inst. Meas. Control,2016

5. Adaptive output feedback tracking control of a nonholonomic mobile robot

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3