Comparing LiDAR and IMU-based SLAM approaches for 3D robotic mapping

Author:

Tiozzo Fasiolo DiegoORCID,Scalera Lorenzo,Maset Eleonora

Abstract

AbstractIn this paper, we propose a comparison of open-source LiDAR and Inertial Measurement Unit (IMU)-based Simultaneous Localization and Mapping (SLAM) approaches for 3D robotic mapping. The analyzed algorithms are often exploited in mobile robotics for autonomous navigation but have not been evaluated in terms of 3D reconstruction yet. Experimental tests are carried out using two different autonomous mobile platforms in three test cases, comprising both indoor and outdoor scenarios. The 3D models obtained with the different SLAM algorithms are then compared in terms of density, accuracy, and noise of the point clouds to analyze the performance of the evaluated approaches. The experimental results indicate the SLAM methods that are more suitable for 3D mapping in terms of the quality of the reconstruction and highlight the feasibility of mobile robotics in the field of autonomous mapping.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference37 articles.

1. A Tutorial on Graph-Based SLAM

2. [18] Hahnel, D. , Burgard, W. , Fox, D. and Thrun, S. , “An Efficient FastSLAM Algorithm for Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range Measurements,” In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 1 (2003) pp. 206–211.

3. Performance Investigation and Repeatability Assessment of a Mobile Robotic System for 3D Mapping

4. Building Information Modeling (BIM) for existing buildings — Literature review and future needs

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3