An effective point cloud registration method for three-dimensional reconstruction of pressure piping

Author:

Zhang YulongORCID,Guan Enguang,Wang BaoyuORCID,Zhao Yanzheng

Abstract

Abstract At present, industrial scenes with sparse features and weak textures are widely encountered, and the three-dimensional reconstruction of such scenes is a recognized problem. Pressure pipelines have a wide range of applications in fields such as petroleum engineering, chemical engineering, and hydropower station engineering. However, there is no mature solution for the three-dimensional reconstruction of pressure pipes. The main reason is that the typical scenes in which pressure pipes are found also have relatively few features and textures. Traditional three-dimensional reconstruction algorithms based on feature extraction are largely ineffective for such scenes that are lacking in features. In view of the above problems, this paper proposes an improved interframe registration algorithm based on point cloud fitting with cylinder axis vector constraints. By incorporating geometric feature parameters of a cylindrical pressure pipeline, specifically the axis vector of the cylinder, to constrain the traditional iterative closest point algorithm, the accuracy of point cloud registration can be improved in scenarios lacking features and textures, and some environmental uncertainties can be overcome. Finally, using actual laser point cloud data collected from pressure pipelines, the proposed fitting-based point cloud registration algorithm with cylinder axis vector constraints is tested. The experimental results show that under the same conditions, compared with other open-source point cloud registration algorithms, the proposed method can achieve higher registration accuracy. Moreover, integrating this algorithm into an open-source three-dimensional reconstruction algorithm framework can lead to better reconstruction results.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3