Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations

Author:

Stoyanov Todor1,Magnusson Martin1,Andreasson Henrik1,Lilienthal Achim J1

Affiliation:

1. Center of Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden

Abstract

Registration of range sensor measurements is an important task in mobile robotics and has received a lot of attention. Several iterative optimization schemes have been proposed in order to align three-dimensional (3D) point scans. With the more widespread use of high-frame-rate 3D sensors and increasingly more challenging application scenarios for mobile robots, there is a need for fast and accurate registration methods that current state-of-the-art algorithms cannot always meet. This work proposes a novel algorithm that achieves accurate point cloud registration an order of a magnitude faster than the current state of the art. The speedup is achieved through the use of a compact spatial representation: the Three-Dimensional Normal Distributions Transform (3D-NDT). In addition, a fast, global-descriptor based on the 3D-NDT is defined and used to achieve reliable initial poses for the iterative algorithm. Finally, a closed-form expression for the covariance of the proposed method is also derived. The proposed algorithms are evaluated on two standard point cloud data sets, resulting in stable performance on a par with or better than the state of the art. The implementation is available as an open-source package for the Robot Operating System (ROS).

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coherent point drift with Skewed Distribution for accurate point cloud registration;Computers & Graphics;2024-08

2. GOGICP: A Real-time Gaussian Octree-based GICP Method for Faster Point Cloud Registration;2024 IEEE International Conference on Real-time Computing and Robotics (RCAR);2024-06-24

3. A 3D Point Attacker for LiDAR-Based Localization;2024 IEEE 18th International Conference on Control & Automation (ICCA);2024-06-18

4. An effective point cloud registration method for three-dimensional reconstruction of pressure piping;Robotica;2024-05-16

5. GIRA: Gaussian Mixture Models for Inference and Robot Autonomy;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3