Abstract
We start by recalling the following theorem of Rohrlich [17]. To state it, let
$\unicode[STIX]{x1D714}_{\mathfrak{z}}$
denote half of the size of the stabilizer
$\unicode[STIX]{x1D6E4}_{\mathfrak{z}}$
of
$\mathfrak{z}\in \mathbb{H}$
in
$\text{SL}_{2}(\mathbb{Z})$
and for a meromorphic function
$f:\mathbb{H}\rightarrow \mathbb{C}$
let
$\text{ord}_{\mathfrak{z}}(f)$
be the order of vanishing of
$f$
at
$\mathfrak{z}$
. Moreover, define
$\unicode[STIX]{x1D6E5}(z):=q\prod _{n\geqslant 1}(1-q^{n})^{24}$
, where
$q:=e^{2\unicode[STIX]{x1D70B}iz}$
, and set
$\unicode[STIX]{x1D55B}(z):=\frac{1}{6}\log (y^{6}|\unicode[STIX]{x1D6E5}(z)|)+1$
, where
$z=x+iy$
. Rohrlich’s theorem may be stated in terms of the Petersson inner product, denoted by
$\langle ~,\,\rangle$
.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献