Abstract
A well-known result of classical function theory, Jensen's formula, expresses the integral around a circle of the log modulus of a meromorphic function in terms of the log modulus of the zeros and poles of that function lying inside the circle. Explicitly, if F is a meromorphic function on the unit disc {ω ε ℂ: |ω| < 1} and F(0) = 1, then, for 0 < r < 1,where ordωF is the order of F at ω. The purpose of this note is to observe that a formula analogous to (1) holds when F is replaced by a modular function for SL2(ℤ) and the integral by a suitable double integral over a fundamental domain. We shall derive this modular variant of Jensen's formula from the usual version by applying the Rankin-Selberg method and the first Kronecker limit formula. The argument admits some extension to Fuchsian groups other than SL2(ℤ), and to modular forms of weight other than zero; this point will be discussed later.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions
2. Dedekind Sums for a Fuchsian Group, I
3. Bemerkungen über eine Dirichletsche Reihe die mit der Theorie der Modulformen nahe verbunden ist;Selberg;Arch. Math. Naturvid.,1940
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. KRONECKER LIMIT FUNCTIONS AND AN EXTENSION OF THE ROHRLICH–JENSEN FORMULA;Nagoya Mathematical Journal;2023-04-11
2. AN EXTENSION OF ROHRLICH’S THEOREM TO THE -FUNCTION;Forum of Mathematics, Sigma;2020
3. A Jensen–Rohrlich type formula for the hyperbolic 3-space;Transactions of the American Mathematical Society;2018-08-17
4. On the Zeros of Certain Cusp Forms;Mathematical Proceedings of the Cambridge Philosophical Society;2006-09
5. ZEROS OF EISENSTEIN SERIES;Kyushu Journal of Mathematics;2004