Toward low-cost automated monitoring of life below water with deep learning

Author:

Ayyagari DeviORCID,Morris CoreyORCID,Barnes JoshuaORCID,Whidden ChristopherORCID

Abstract

AbstractOceans will play a crucial role in our efforts to combat the growing climate emergency. Researchers have proposed several strategies to harness greener energy through oceans and use oceans as carbon sinks. However, the risks these strategies might pose to the ocean and marine ecosystem are not well understood. It is imperative that we quickly develop a range of tools to monitor ocean processes and marine ecosystems alongside the technology to deploy these solutions on a large scale into the oceans. Large arrays of inexpensive cameras placed deep underwater coupled with machine learning pipelines to automatically detect, classify, count, and estimate fish populations have the potential to continuously monitor marine ecosystems and help study the impacts of these solutions on the ocean. In this paper, we successfully demonstrate the application of YOLOv4 and YOLOv7 deep learning models to classify and detect six species of fish in a dark artificially lit underwater video dataset captured 500 m below the surface, with a mAP of 76.01% and 85.0%, respectively. We show that 2,000 images per species, for each of the six species of fish is sufficient to train a machine-learning species classification model for this low-light environment. This research is a first step toward systems to autonomously monitor fish deep underwater while causing as little disruption as possible. As such, we discuss the advances that will be needed to apply such systems on a large scale and propose several avenues of research toward this goal.

Funder

Natural Sciences and Engineering Research Council of Canada

National Research Council Canada

Ocean Frontier Institute

Publisher

Cambridge University Press (CUP)

Reference59 articles.

1. A Style-Based Generator Architecture for Generative Adversarial Networks

2. Pörtner, H-O , Roberts, DC , Masson-Delmotte, V , Zhai, P , Tignor, M , Poloczanska, E and Weyer, NM (2019) The ocean and cryosphere in a changing climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.

3. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

4. The Potential for Ocean-Based Climate Action: Negative Emissions Technologies and Beyond

5. The 2015 Paris Climate Change Conference: Cop21

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3