Monitoring data for a new large offshore marine protected area reveals infeasible management objectives

Author:

Morris Corey J.1ORCID,Nguyen Khanh Q.1ORCID,Neves Bárbara de Moura1ORCID,Cote David1ORCID

Affiliation:

1. Science Branch Fisheries and Oceans Canada St. John's Newfoundland and Labrador Canada

Abstract

AbstractPredicting and measuring changes resulting from marine protected areas (MPAs) has posed a challenge for practitioners, partly because ecosystems are complex and can change in unanticipated ways, but also due to MPA characteristics such as design factors, conservation objectives (COs), and monitoring programs, that can leave little chance of meeting stated goals. We consider these design factors for the Laurentian Channel MPA, a large offshore Canadian protected area established to protect against fishing impacts. Specifically, in this study we evaluated (1) whether it is realistic to expect improvements in the MPA for four previously established taxa‐specific COs, and (2) whether existing scientific surveys are capable of detecting changes in these CO taxa even if they occurred. Three CO species were sampled in scientific multispecies research vessel trawl surveys (Black Dogfish, Smooth Skate, and Northern Wolffish) and a fourth CO, sea pen taxa, were enumerated using seafloor imagery. Simulations indicate that trawl surveys have very little chance of detecting change in the abundance of the three fish species examined, while seafloor imagery data had higher statistical power for sea pen taxa. Moreover, we show that expecting change related to the removal of fishing is unrealistic due to the fact that the MPA was established in an area of minimal fishing pressure. While positive change is unlikely to be induced by the MPA, or be detected if they occurred, this MPA could provide conservation benefits if COs and monitoring approaches were realigned to match the unique features of this area that represents largely unimpacted sensitive benthic habitats.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3