Imaging analysis method to quantify leaf deformation in response to sub-lethal rates of dicamba

Author:

Wasacz Maggie H.ORCID,Sosnoskie Lynn M.ORCID,Elmore Matthew T.ORCID,Besançon Thierry E.ORCID

Abstract

AbstractDicamba is a synthetic auxin herbicide that is prone to off-target movement, including drift and volatilization. Due to the increased acreage of dicamba-resistant soybean to control glyphosate-resistant weeds, dicamba drift injury to neighboring vegetable crops is of concern. A method to quantify leaf deformation (often referred to as leaf cupping) caused by dicamba injury was developed and compared to visual rating techniques to determine its accuracy and suitability. A second objective was to determine the relative dicamba sensitivity of several economically important vegetable crops. Soybean, snap bean, tomato, and cucumber were grown in a greenhouse and exposed to dicamba at 0, 56, 112, 280, 560, 1,120, and 2,240 mg ae ha−1, which is, respectively, 0, 1/10,000, 1/5,000, 1/2,000, 1/1,000, 1/500, and 1/250 of the maximum recommended label rate for soybean application (560 g ae ha−1). Plants were evaluated visually and using an imaging analysis technique that measures the leaf deformation index (LDI) with a leaf area scanner. LDI is calculated by dividing the two-dimensional projection of the area of the leaf in its natural configuration by the area of the flattened leaf. Across all four crops, log-logistic regression analysis indicated the LDI method had lower I50 values with lower standard error, demonstrating that the LDI method gives more precise estimates of sensitivity. This novel method provides an objective, quantitative method for measuring dicamba drift injury and determining relative sensitivities of valuable specialty crops.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference28 articles.

1. Dicamba Uptake, Translocation, Metabolism, and Selectivity

2. Dicamba Volatility

3. Sensitivity of grape and tomato to micro-rates of dicamba-based herbicides;Knezevic;J Hort,2018

4. Soybean Response to Dicamba: A Meta-Analysis

5. Wechsler, SJ , Smith, D , McFadden, J , Dodson, L , Williamson, S. (2019) The use of genetically engineered dicamba-tolerant soybean seeds has increased quickly, benefiting adopters but damaging crops in some fields. Washington: U.S. Department of Agriculture–Economic Research Service

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3