Dicamba Volatility

Author:

Behrens Richard,Lueschen W. E.

Abstract

Factors influencing dicamba drift, especially vapor drift, were examined in field and growth chamber studies. In field experiments, potted soybeans[Glycine max(L.) Merr.]. exposed to vapors arising from corn (Zea maysL.) foliarly treated with the sodium (Na), dimethylamine (DMA), diethanolamine (DEOA), orN-tallow-N,N1,N1-trimethyl-1,3-diaminopropane (TA) salts of dicamba (3,6-dichloro-o-anisic acid), developed dicamba injury symptoms. Dicamba volatilization from treated corn was detected with soybeans for 3 days after the application. Dicamba vapors caused symptoms on soybeans placed up to 60m downwind of the treated corn. When vapor and/or spray drift caused soybean terminal bud kill, yields were reduced. In growth chamber studies, dicamba volatility effects on soybeans could be reduced by lowering the temperature or increasing the relative humidity. Rainfall of 1mm or more on treated corn ended dicamba volatilization. The dicamba volatilization was greater from corn and soybean leaves than from velvetleaf (Abutilon theophrastiMedic.) leaves and blotter paper. The volatilization of dicamba formulations varied in growth chamber comparisons with the acid being most volatile and the inorganic salts being the least volatile. However, under field conditions, use of less volatile formulations did not eliminate dicamba symptoms on soybeans. The volatile component of the commercial DMA salt of dicamba was identified by gas chromatography-mass spectrometry as free dicamba acid.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference13 articles.

1. Information provided by M. K. Fresvik, Agron. Serv., Minnesota Dep. Agric., St. Paul, MN 55101.

2. Response of soybeans to 2,4-D, dicamba and picloram;Wax;Weed Sci.,1969

3. Pesticide volatilization;Spencer;Residue Rev.,1973

4. Studies on Foliar Penetration

5. Banvel volatility studies;Richter;Velsicol Res. Develop. Dep. Newsl.,1972

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3