Soybean Response to Dicamba: A Meta-Analysis

Author:

Kniss Andrew R.ORCID

Abstract

AbstractA meta-analysis of 11 previously published field studies was conducted with the objectives being to (1) estimate the no observable effects dose (NOED) for dicamba on susceptible soybean; (2) evaluate available evidence for hormesis, or increased soybean yield in response to low doses of dicamba; (3) estimate the dose of dicamba likely to cause measurable soybean yield loss under field conditions; and (4) quantify the relationship between visible injury symptoms and soybean yield loss. All studies that included visible injury data (N=7) reported injury symptoms at the lowest nonzero dicamba dose applied (as low as 0.03 g ae ha−1), and therefore a NOED could not be estimated from the existing peer-reviewed literature. Based on statistical tests for hormesis, there is insufficient evidence to support any claim of increased soybean yield at low dicamba doses. Future research should include a range of dicamba doses lower than 0.03 g ha−1to estimate a NOED and determine whether a hormesis effect is possible at or below dicamba doses that cause visible injury symptoms. Soybean is more susceptible to dicamba when exposed at flowering (R1 to R2 stage) compared with vegetative stages (V1 to V7). A dicamba dose of 0.9 g ha−1(95% CI=0.08 to 1.7) at the flowering stage was estimated to cause 5% soybean yield loss. When exposed at vegetative stages, dicamba doses that cause less than 30% visible injury symptoms (95% CI=23 to 49%) appear unlikely to cause greater than 5% soybean yield loss; however, if soybean is exposed at flowering, visible injury symptoms greater than 12% (95% CI=8 to 16%) are likely to be associated with at least 5% soybean yield loss.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference24 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3