Stratified flows with vertical layering of density: experimental and theoretical study of flow configurations and their stability

Author:

Camassa Roberto,McLaughlin Richard M.,Moore Matthew N. J.,Yu Kuai

Abstract

AbstractA vertically moving boundary in a stratified fluid can create and maintain a horizontal density gradient, or vertical layering of density, through the mechanism of viscous entrainment. Experiments to study the evolution and stability of axisymmetric flows with vertically layered density are performed by towing a narrow fibre upwards through a stably stratified viscous fluid. The fibre forms a closed loop and thus its effective length is infinite. A layer of denser fluid is entrained and its thickness is measured by implementing tracking analysis of dyed fluid images. Thickness values of up to 70 times that of the fibre are routinely obtained. A lubrication model is developed for both a two-dimensional geometry and the axisymmetric geometry of the experiment, and shown to be in excellent agreement with dynamic experimental measurements once subtleties of the optical tracking are addressed. Linear stability analysis is performed on a family of exact shear solutions, using both asymptotic and numerical methods in both two dimensions and the axisymmetric geometry of the experiment. It is found analytically that the stability properties of the flow depend strongly on the size of the layer of heavy fluid surrounding the moving boundary, and that the flow is neutrally stable to perturbations in the large-wavelength limit. At the first correction of this limit, a critical layer size is identified that separates stable from unstable flow configurations. Surprisingly, in all of the experiments the size of the entrained layer exceeds the threshold for instability, yet no unstable behaviour is observed. This is a reflection of the small amplification rate of the instability, which leads to growth times much longer than the duration of the experiment. This observation illustrates that for finite times the hydrodynamic stability of a flow does not necessarily correspond to whether or not that flow can be realised from an initial-value problem. Similar instabilities that are neutral to leading order with respect to long waves can arise under the different physical mechanism of viscous stratification, as studied by Yih (J. Fluid Mech., vol. 27, 1967, pp. 337–352), and we draw a comparison to that scenario.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3