Flow past a sphere moving vertically in a stratified diffusive fluid

Author:

TORRES C. R.,HANAZAKI H.,OCHOA J.,CASTILLO J.,VAN WOERT M.

Abstract

Numerical studies are described of the flows generated by a sphere moving vertically in a uniformly stratified fluid. It is found that the axisymmetric standing vortex usually found in homogeneous fluids at moderate Reynolds numbers (25 [les ] Re [les ] 200) is completely collapsed by stable stratification, generating a strong vertical jet. This is consistent with our experimental visualizations. For Re = 200 the complete collapse of the vortex occurs at Froude number F ≃ 19, and the critical Froude number decreases slowly as Re increases. The Froude number and the Reynolds number are here defined by F = W/Na and Re = 2Wa/v, with W being the descent velocity of the sphere, N the Brunt–Väisälä frequency, a the radius of the sphere and v the kinematic viscosity coefficient. The inviscid processes, including the generation of the vertical jet, have been investigated by Eames & Hunt (1997) in the context of weak stratification without buoyancy effects. They showed the existence of a singularity of vorticity and density gradient on the rear axis of the flow and also the impossibility of realizing a steady state. When there is no density diffusion, all the isopycnal surfaces which existed initially in front of the sphere accumulate very near the front surface because of density conservation and the fluid in those thin layers generates a rear jet when returning to its original position. In the present study, however, the fluid has diffusivity and the buoyancy effects also exist. The density diffusion prevents the extreme piling up of the isopycnal surfaces and allows the existence of a steady solution, preventing the generation of a singularity or a jet. On the other hand, the buoyancy effect works to increase the vertical velocity to the rear of the sphere by converting the potential energy to vertical kinetic energy, leading to the formation of a strong jet. We found that the collapse of the vortex and the generation of the jet occurs at much weaker stratifications than those necessary for the generation of strong lee waves, showing that jet formation is independent of the internal waves. At low Froude numbers (F [les ] 2) the lee wave patterns showed good agreement with the linear wave theory and the previous experiments by Mowbray & Rarity (1967). At very low Froude numbers (F [les ] 1) the drag on a sphere increases rapidly, partly due to the lee wave drag but mainly due to the large velocity of the jet. The jet causes a reduction of the pressure on the rear surface of the sphere, which leads to the increase of pressure drag. High velocity is induced also just outside the boundary layer of the sphere so that the frictional drag increases even more significantly than the pressure drag.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3