A first-principle predictive theory for a sphere falling through sharply stratified fluid at low Reynolds number

Author:

CAMASSA ROBERTO,FALCON CLAUDIA,LIN JOYCE,McLAUGHLIN RICHARD M.,MYKINS NICHOLAS

Abstract

A sphere exhibits a prolonged residence time when settling through a stable stratification of miscible fluids due to the deformation of the fluid-density field. Using a Green's function formulation, a first-principles numerically assisted theoretical model for the sphere–fluid coupled dynamics at low Reynolds number is derived. Predictions of the model, which uses no adjustable parameters, are compared with data from an experimental investigation with spheres of varying sizes and densities settling in stratified corn syrup. The velocity of the sphere as well as the deformation of the density field are tracked using time-lapse images, then compared with the theoretical predictions. A settling rate comparison with spheres in dense homogeneous fluid additionally quantifies the effect of the enhanced residence time. Analysis of our theory identifies parametric trends, which are also partially explored in the experiments, further confirming the predictive capability of the theoretical model. The limit of infinite fluid domain is considered, showing evidence that the Stokes paradox of infinite fluid volume dragged by a moving sphere can be regularized by density stratifications. Comparisons with other possible models under a hierarchy of additional simplifying assumptions are also presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

1. The Influence of Density Stratification on Particle Settling, Dispersion and Population Growth

2. Low Reynolds number motion of bubbles, drops and rigid spheres through fluid–fluid interfaces

3. Note on hydrodynamics

4. Lin J. 2009 An experimental and mathematical study on the prolonged residence time of a sphere falling through stratified fluids at low Reynolds number. PhD thesis, University North Carolina, North Carolina, NC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3