Escaping mass approach for inclined plane and round buoyant jets

Author:

Yannopoulos P. C.,Bloutsos A. A.

Abstract

AbstractAn integral model predicting the mean flow and mixing properties of inclined plane and round turbulent buoyant jets in a motionless environment of uniform density is proposed. The escaping masses from the main buoyant jet flow are simulated, and the model can be successfully applied to initial discharge inclinations${\theta }_{0} $from 90 to$\ensuremath{-} 7{5}^{\ensuremath{\circ} } $with respect to the horizontal plane. This complementary approach introduces a concentration coefficient, which is calibrated using experimental evidence. The present model has incorporated the second-order approach and, regarding the jet-core region, a jet-core model based on the advanced integral model for the production of more correct transverse profiles of the mean axial velocities and mean concentrations than the common Gaussian or top-hat profiles. The partial differential equations for momentum and tracer conservation are written in orthogonal and cylindrical curvilinear coordinates for inclined plane and round buoyant jets, respectively, and they are integrated under the closure assumptions of (a) quasi-linear spreading of the mean flow and mixing fields, and (b) known transverse profile distributions. The integral forms are solved by employing the Runge–Kutta algorithm. Since the most important contribution in the present model is the simulation of the escaping masses, the model has been called the escaping mass approach (EMA). Herein EMA is applied to predict the mean flow properties (trajectory characteristics, mean axial velocities and mean concentrations) for inclined plane and round buoyant jets. The results predicted are compared with experimental data available in the literature, and the accuracy obtained is more than satisfactory. The performance of the EMA is up to 56 % better than using classical integral procedures. EMA can be used for design purposes and for environmental impact assessment studies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3