Author:
Law Shuen,Davidson Mark J.,McConnochie Craig,Lagrava Daniel
Abstract
AbstractThe results of numerical simulations of inclined negatively buoyant jets are presented. These simulations address previously highlighted difficulties in capturing sufficient detail of critical flow processes to effectively predict the detailed flow behaviour. In particular, the new simulations are able to accurately capture the details of the buoyancy-induced instabilities, which are clearly evident in associated experimental investigations and that have significant impacts on the flow behaviour. This new information is captured for inclined negatively buoyant jets discharged at 45° above a horizontal reference plane. A Large Eddy Simulation (LES) approach is implemented that makes use of a Lagrangian Dynamic Sub-grid scale (SGS) model and a novel criterion for the adaptive meshing system. Comparisons with previously published simulation results and experimental data demonstrate that these new Adaptive LES simulations provide improved predictions of flow path, concentration and velocity fields, and associated mean and turbulent statistics. In addition, this study provides a set of methods for generating high-quality LES data sets for free shear flows, which are well beyond the level of detail that can be captured by current experimental systems.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Environmental Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献