Abstract
We study the asymptotic dynamics of piecewise-contracting maps defined on a compact interval. For maps that are not necessarily injective, but have a finite number of local extrema and discontinuity points, we prove the existence of a decomposition of the support of the asymptotic dynamics into a finite number of minimal components. Each component is either a periodic orbit or a minimal Cantor set and such that the $\unicode[STIX]{x1D714}$-limit set of (almost) every point in the interval is exactly one of these components. Moreover, we show that each component is the $\unicode[STIX]{x1D714}$-limit set, or the closure of the orbit, of a one-sided limit of the map at a discontinuity point or at a local extremum.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献