Author:
Gaivão José Pedro,Laurent Michel,Nogueira Arnaldo
Abstract
AbstractWe study maps of the unit interval whose graph is made up of two increasing segments and which are injective in an extended sense. Such maps $$f_{\varvec{p}}$$
f
p
are parametrized by a quintuple $$\varvec{p}$$
p
of real numbers satisfying inequations. Viewing $$f_{\varvec{p}}$$
f
p
as a circle map, we show that it has a rotation number $$\rho (f_{\varvec{p}})$$
ρ
(
f
p
)
and we compute $$\rho (f_{\varvec{p}})$$
ρ
(
f
p
)
as a function of $$\varvec{p}$$
p
in terms of Hecke–Mahler series. As a corollary, we prove that $$\rho (f_{\varvec{p}})$$
ρ
(
f
p
)
is a rational number when the components of $$\varvec{p}$$
p
are algebraic numbers.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Antunes, A., Bugeaud, Y., Pires, B.: Switched server systems whose parameters are normal numbers in base 4. Qual. Theory Dyn. Syst. 21, 143 (2022)
2. Bowman, J., Sanderson, S.: Angel’s staircase, sturmian sequences, and trajectories on homothetic surfaces. J. Mod. Dyn. 16, 109–153 (2020)
3. Bugeaud, Y.: Dynamique de certaines applications contractantes, linéires par morceaux, sur $$[0,1]$$. C. R. Acad. Sci. Paris Sr. I Math. 317, 575–578 (1993)
4. Bugeaud, Y., Conze, J.-P.: Calcul de la dynamique d’une classe de transformations linéaires contractantes mod 1 et arbre de Farey. Acta Arithmetica LXXXVIII. 3, 201–218 (1999)
5. Bugeaud, Y.: Linear mod one transformations and the distribution of fractional parts $$\{ \xi (p/q)^n\} $$. Acta Arith. 114(4), 301–311 (2004)