Author:
CATSIGERAS E.,GUIRAUD P.,MEYRONEINC A.
Abstract
We study the complexity of the itineraries of injective piecewise contracting maps on the interval. We prove that for any such map the complexity function of any itinerary is eventually affine. We also prove that the growth rate of the complexity is bounded from above by the number, $N-1$, of discontinuities of the map. To show that this bound is optimal, we construct piecewise affine contracting maps whose itineraries all have the complexity $(N-1)n+1$. In these examples, the asymptotic dynamics take place in a minimal Cantor set containing all the discontinuities.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献