Author:
Song Jun,Low K.H.,Guo Weimiao
Abstract
Force and position sensors have been widely used in robots to realize compliance and precise control. Traditional force/position control methods were studied and developed by the inverse dynamics for decades. Generally speaking, the controller contains two parts: One is the error-driven part that guarantees system stability; another is the identification model of inverse dynamics that can compensate for system influence. In practical control engineering, a system inverse dynamics or its identification model is not easy to obtain, even when using nonlinear estimation methods. Moreover, the complicated control algorithm cannot be implemented in on-board microprocessors because of the limited speed and memory. Thus, a simplified control method using a forward system model is introduced in this paper. Since the direct dynamics of the system can be more easily obtained than the inverse dynamics, this, in turn, simplifies the control structure and increases control speed. Therefore, the
proposed control policy has a wider practical application.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献