Body sensor calibration and construction of 3D maps for robot navigation using the framework of conformal geometric algebra

Author:

López-Franco C.,Bayro-Corrochano E.

Abstract

SUMMARYThe research, described in this paper, concerns the robot indoor navigation, emphasizing the aspects of sensor model and calibration, environment representation, and self-localization. The main point is that combining all of these aspects, an effective navigation system is obtained. We present a model of the catadioptric image formation process. Our model simplifies the operations needed in the catadioptric image process. Once we know the model of the catadioptric sensor, we have to calibrate it with respect to the other sensors of the robot, in order to be able to fuse their information. When the sensors are mounted on a robot arm, we can use the hand-eye calibration algorithm to calibrate them. In our case the sensors are mounted on a mobile robot that moves over a flat floor, thus the sensors have less degrees of freedom. For this reason we develop a calibration algorithm for sensors mounted on a mobile robot. Finally, combining all the previous results and a scan matching algorithm that we develop, we build 3D maps of the environment. These maps are used for the self-localization of the robot and to carry out path following tasks. In this work we present experiments which show the effectiveness of the proposed algorithms.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3