Hand-Eye Calibration

Author:

Horaud Radu1,Dornaika Fadi1

Affiliation:

1. LIFIA-IMAG and Inria Rhône-Alpes 46, avenue Félix Viallet 38031 Grenoble, France

Abstract

Whenever a sensor is mounted on a robot hand, it is important to know the relationship between the sensor and the hand. The problem of determining this relationship is referred to as the hand-eye calibration problem. Hand-eye calibration is impor tant in at least two types of tasks: (1) map sensor centered measurements into the robot workspace frame and (2) tasks allowing the robot to precisely move the sensor. In the past some solutions were proposed, particularly in the case of the sensor being a television camera. With almost no exception, all existing solutions attempt to solve a homogeneous matrix equation of the form AX = X B. This article has the following main contributions. First we show that there are two possible formulations of the hand-eye calibration problem. One formu lation is the classic one just mentioned. A second formulation takes the form of the following homogeneous matrix equation: MY = M'YB. The advantage of the latter formulation is that the extrinsic and intrinsic parameters of the camera need not be made explicit. Indeed, this formulation directly uses the 3 x4 perspective matrices (M andM' ) associated with two positions of the camera with respect to the calibration frame. Moreover, this formulation together with the classic one covers a wider range of camera-based sensors to be calibrated with respect to the robot hand: single scan-line cameras, stereo heads, range finders, etc. Second, we develop a common mathematical framework to solve for the hand-eye calibration problem using either of the two formulations. We represent rotation by a unit quaternion and present two methods: (1) a closed-form solution for solving for rotation using unit quaternions and then solving for translation and (2) a nonlinear technique for simultane ously solving for rotation and translation. Third, we perform a stability analysis both for our two methods and for the lin ear method developed by Tsai and Lenz (1989). This analysis allows the comparison of the three methods. In light of this comparison, the nonlinear optimization method, which solves for rotation and translation simultaneously, seems to be the most robust one with respect to noise and measurement errors.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 336 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3