Robot assembly theory and simulation of circular-rectangular compound peg-in-hole

Author:

Wu Weiguo,Liu KexinORCID,Wang Tong

Abstract

AbstractIn this paper, the assembly problem of circular-rectangular compound peg and hole parts in automatic assembly is proposed for the first time, and an automatic assembly method based on six-dimensional force sensor is summarized. Firstly, according to the quasi-static equilibrium condition, the contact states are summarized. It is concluded that there are 7 categories of 44 contact states in insertion stage and the forces conditions to maintain each contact state; Secondly, according to the analysis of the force/moment relationship, the jamming diagram is drawn, and the conditions of jamming are analyzed. Thirdly, the assembly strategy is discussed, including contact state recognition strategy, hole searching strategy, and pose adjustment strategy. Finally, combined with impedance control, the assembly theory is verified in ADAMS, and the assembly with minimum clearance of 0.1 mm is achieved.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference23 articles.

1. Model-Free Robust Adaptive Control for flexible rubber objects manipulation

2. [7] Ohwovoriole, M. S. . An Extension of Screw Theory and its Application to the Automation of Industrial Assemblies, Diss. (Stanford University, 1980).

3. [19] Tsumugiwa, T. , Sakamoto, A. , Yokogawa, R. and Hara, K. , “Switching Control of Position/Torque Control for Human-Robot Cooperative Task-Human-Robot Cooperative Carrying and Peg-In-Hole Task, In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03ch37422) (vol. 2, IEEE, 2003).

4. Development of Efficient Strategy for Square Peg-in-Hole Assembly Task

5. Contact analysis for dual peg-in-hole assembly of automobile alternator frame

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3