Fall detection in walking robots by multi-way principal component analysis

Author:

Karssen J. G. Daniël,Wisse Martijn

Abstract

SUMMARYLarge disturbances can cause a biped to fall. If an upcoming fall can be detected, damage can be minimized or the fall can be prevented. We introduce the multi-way principal component analysis (MPCA) method for the detection of upcoming falls. We study the detection capability of the MPCA method in a simulation study with the simplest walking model. The results of this study show that the MPCA method is able to predict a fall up to four steps in advance in the case of single disturbances. In the case of random disturbances the MPCA method has a successful detection probability of up to 90%.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference18 articles.

1. Passive Dynamic Walking

2. 10. Yamaguchi J. , Soga E. , Inoue S. and Takanishi A. . “Development of a bipedal humanoid robot-control method of wholebody cooperative dynamic biped walking,” Proceedings of 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, pp. 368–374 (1999).

3. Fault detection properties of global, local and time evolving models for batch process monitoring

4. Monitoring batch processes using multiway principal component analysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fall Prediction for Bipedal Robots: The Standing Phase;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. A survey on control of humanoid fall over;Robotics and Autonomous Systems;2023-08

3. Optimizing Lead Time in Fall Detection for a Planar Bipedal Robot;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

4. Human inspired fall arrest strategy for humanoid robots based on stiffness ellipsoid optimisation;Bioinspiration & Biomimetics;2021-08-23

5. Human inspired fall prediction method for humanoid robots;Robotics and Autonomous Systems;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3