Abstract
SUMMARYThis paper introduces a new RGBD-Simultaneous Localization And Mapping (RGBD-SLAM) based on a revisited keyframe SLAM. This solution improves the localization by combining visual and depth data in a local bundle adjustment. Then, it presents an extension of this RGBD-SLAM that takes advantage of a partial knowledge of the scene. This solution allows using a prior knowledge of the 3D model of the environment when this latter is available which drastically improves the localization accuracy. The proposed solutions called RGBD-SLAM and Constrained RGBD-SLAM are evaluated on several public benchmark datasets and on real scenes acquired by a Kinect sensor. The system works in real time on a standard central processing units and it can be useful for certain applications, such as localization of lightweight robots, UAVs, and VR helmet.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献