Abstract
SummaryAn approach for calculating the maximum possible absolute values of joint velocities or generalized reactions in a leg of a parallel mechanism has been considered in this paper. The Jacobian analysis and the Screw theory-based methods have been used to acquire the result. These values are calculated for the “worst” directions of the external load or end-effector’s velocity for each leg. The feasibility of using these parameters as the measures of closeness to different types of parallel mechanism singularity is discussed. Further, how this approach is related to the state-of-the-art methods has been illustrated. The key aspect of the discussed approach is that the normalization of vectors or screws is carried out separately for angular and linear components. One possible advantage of such an approach is that it deals only with the kinematic and statics of the mechanism while still providing physically meaningful and practically applicable measures. Case studies of a 3-Degrees Of Freedom translational parallel mechanism and a planar parallel mechanism are presented for illustration and comparison.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献