Formulation and numerical solution of elastic robot dynamic motion with maximum load carrying capacities

Author:

korayem M.H.,Basu A.

Abstract

SUMMARYThis paper presents a new formulation as well as numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators. For rigid manipulators, the major limiting factor in determining the maximum allowable load (mass and mass moment of inertia) is the joint actuator capacity, while the flexibility exhibited by light weight robots or by robots operating at a higher speed dictates the need for an additional constraint to be imposed for situations where precision tracking is required, that is, the allowable deformation at the end effector. The Lagrangian assumed mode method was used to model the manipulator and load dynamics, including both joint and deflection motions. An Iterative Linear Programming (ILP) method is then used to determine the maximum allowable load of elastic robot subject to both constraints, while a general computational procedure for the multiple-link case given arbitrary trajectories is presented in detail. Symbolic derivation and simulation by using a PC-based symbolic language MATHEMATICA® was carried out for a two-link planer robot and the results further confirm the necessity of the dual constraints.Rough joint flexibility is the dominant source of compliance in today's commercial robots in future robots containing light weight flexible arms link flexibility may become most important. Hence this paper stresses link flexibility rather than joint flexibility.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference14 articles.

1. Symbolic Derivation and Dynamic Simulation of Flexible Manipulators;Korayem;Proc. Int. Conf. on Intelligent Control and Instrumentation,1992

2. Experiments on the Payload-Adaptation of A Flexible One-Link Manipulator with Unknown Payload;Sema;Proc. IEEE Int. Conf. Robotics and Automation,1990

3. On trajectory generation for flexible robots

4. Dynamics of Flexible Bodies Using Generalized Newton-Euler Equations

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3