Abstract
Oceanic internal waves can be decomposed into an infinite set of modes, and the dominant internal mode 1 waves have been extensively investigated. Although mode 2 waves have been observed, they have not received comparable attention, especially the generation mechanisms. In this work, we examine the generation of mode 2 internal waves by the interaction of mode 1 waves with topography. We use a coupled linear long-wave theory with mode coupling through topography, combined with evolution using a Korteweg–de Vries model, to predict the mode 2 wave amplitude, in an ideal three-layer fluid model, in a smooth density stratification and in two realistic oceanic settings. We find that the mode 2 wave amplitude is usually much smaller than the incident mode 1 wave amplitude and is quite sensitive to the pycnocline thickness, topographic slope and background stratification.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献