Affiliation:
1. Ocean College Zhejiang University Zhoushan China
2. Donghai Laboratory Zhoushan China
3. Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
Abstract
AbstractWhen internal solitary waves (ISW) propagate to the continental shelf, they typically runup and break on the forereef. This process might lead to periodic temperature drops at the reef slope, which has potential to protect coral reefs from bleaching threats. A series of laboratory experiments were conducted to investigate turbulence characteristics and energy dissipation during the ISW breaking events on the shelf slope with different bottom roughness to mimic the forereef environment. Particle image velocimetry (PIV) and planar laser‐induced fluorescence (PLIF) were coupled to obtain simultaneous high‐resolution velocity and density fields, based on which we then calculate the energy budget and turbulent dissipation rate. We found that the ISW breaking can be divided into two turbulent processes, the production of shear instability and coherent structures. Ratio of energy loss is weakened with the increase of bottom roughness and the collapse height, while the rough structure substantially enhanced the turbulent dissipation rate. The mixing efficiency is between 0.1 and 0.3, close to its maximal rate at 0.25. Our results reveal that the bottom roughness has impact on the mixing efficiency and turbulent process during the ISW breaking events. We found that rough structures at the shelf slope inhibit the mixing efficiency, especially in cases with small amplitude incline ISW. This finding may help us to better understand the reef damage and coral reef decline and support the management of coral protection strategy.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献