Internal ring waves in a three-layer fluid on a current with a constant vertical shear

Author:

Tseluiko DORCID,Alharthi N S,Barros RORCID,Khusnutdinova K RORCID

Abstract

Abstract Oceanic internal waves often have curvilinear fronts and propagate over vertically sheared currents. We present the first study of long weakly-nonlinear internal ring waves in a three-layer fluid in the presence of a horizontally uniform background current with a constant vertical shear. The leading order of this theory leads to the angular adjustment equation—a nonlinear first-order ordinary differential equation describing the dependence of the linear long-wave speed on its angle to the direction of the current. The compact ring waves, well studied in the absence of a current, correspond to the singular solution (envelope of the general solution) of this equation, and they can exist only under certain conditions. The constructed solutions reveal qualitative differences in the shapes of the wavefronts of the two baroclinic modes: the wavefront of the faster mode is elongated in the direction of the current, while the wavefront of the slower mode is squeezed. Moreover, depending on the vorticity strength, several different regimes have been identified. When the vertical shear is weak, part of the wavefront is able to propagate upstream, while when the shear is strong enough, the whole wavefront propagates downstream. A richer pattern of behaviour is observed for the slower mode. As the shear increases, singularities of the swallowtail-type may arise and, eventually, solutions with compact wavefronts crossing the downstream axis cease to exist. We show that the latter is related to the long-wave instability of the base flow. We obtain the cKdV-type amplitude equation and examine analytical expressions for its coefficients. Using this cKdV-type equation we numerically model the evolution of the waves for both modes. The initial stage of the evolution is in agreement with the leading-order predictions for the deformations of the wavefronts. Then, as the wavefronts expand, strong dispersive effects occur in the upstream direction. Moreover, when nonlinearity is enhanced, fission of waves is observed in the upstream part of the ring waves.

Funder

King Abdulaziz University

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3