Author:
Gerrer Thomas,Cimalla Volker,Waltereit Patrick,Müller Stefan,Benkhelifa Fouad,Maier Thomas,Czap Heiko,Ambacher Oliver,Quay Rüdiger
Abstract
AbstractWe present a novel bonding process for gallium nitride-based electronic devices on diamond heat spreaders. In the proposed technology, GaN devices are transferred from silicon (Si) onto single (SCD) and polycrystalline diamond (PCD) substrates by van der Waals bonding. Load-pull measurements on Si and SCD heat spreaders at 3 GHz and 50 V drain bias show comparable power-added-efficiency and output power (Pout) levels. A thermal analysis of the hybrids was performed by comparison of 2 × 1mm2AlGaN/GaN Schottky diodes on Si, PCD, and SCD, which exhibit a homogeneous field in the channel in contrast to gated transistors. Significantly different currents are observed due to the temperature dependent mobility in the 2DEG channel. These measurements are supported by a 3D thermal finite element analysis, which suggests a large impact of our transfer technique on the thermal resistance of these devices. In summary, we show a promising new GaN-on-diamond technology for future high-power, microwave GaN device applications.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献