Self-heating phenomena in high-power III-N transistors and new thermal characterization methods developed within EU project TARGET

Author:

Kuzmik Jan,Bychikhin Sergey,Pichonat Emmanuelle,Gaquière Christophe,Morvan Erwan,Kohn Erhard,Teyssier Jean-Pierre,Pogany Dionyz

Abstract

In the framework of the Top Amplifier Research Groups in a European Team (TARGET) project, we developed a new electrical method for the temperature measurement of HEMTs and performed several unique studies on the self-heating effects in AlGaN/GaN HEMTs. This method, in combination with transient interferometric mapping (TIM), provides a fundamental understanding of the heat propagation in a transient state of HEMTs. The AlGaN/GaN/Si HEMT thermal resistance was determined to be ~70 K/W after 400 ns from the start of a pulse, and the heating time constant was ~200 ns. Our experimental methods were further applied on multifinger high-power AlGaN/GaN/sapphire HEMTs. The TIM method indicates that the airbridge structure serves as a cooler, removing approximately 10% of the heat energy. In the next study we used TIM and the micro-Raman technique to quantify thermal boundary resistance (TBR) between different wafer materials and GaN epi-structure. We found TBR to be ~7 × 10−8 m2K/W for GaN/Si and ~1.2 × 10−7 m2K/W for GaN/SiC interfaces. The role of TBR at the GaN/sapphire interface was found to be less important.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3