Abstract
AbstractLet p be a prime number and M a quadratic number field, M ≠ ℚ() if p ≡ 1 mod 4. We will prove that for any positive integer d there exists a Galois extension F/ℚ with Galois group D2p and an elliptic curve E/ℚ such that F contains M and the p-Selmer group of E/F has size at least pd.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On a BSD-type formula for L-values of Artin twists of elliptic curves;Journal für die reine und angewandte Mathematik (Crelles Journal);2020-10-22
2. p-Selmer growth in extensions of degree p;Journal of the London Mathematical Society;2017-02-20
3. Brauer relations in finite groups;Journal of the European Mathematical Society;2015
4. Index formulae for integral Galois modules;Journal of the London Mathematical Society;2013-09-09
5. ELLIPTIC CURVES WITH p-SELMER GROWTH FOR ALL p;The Quarterly Journal of Mathematics;2012-11-08